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Quantum Charged Non-Linear Nano-String
and Quantum Vacuum
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The classical and quantum dynamic of a non-linear charged vibrating string and its
interaction with quantum vacuum field is investigated. Some probability amplitudes
for transitions between vacuum field and quantum states of the string are obtained.
The effect of non-linearity on some probability amplitudes is investigated and finally
the correct equation for string containing the vacuum and radiation reaction field is
obtained.
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1. INTRODUCTION

In QED a charged particle in quantum vacuum interacts with the vacuum field
and its own field known as radiation reaction. In classical electrodynamics there is
only the radiation reaction field that acts on a charged particle in the vacuum. The
vacuum and radiation reaction fields have a fluctuation–dissipation connection
(Milonni, 1994) and both are required for the consistency of QED. For example,
the stability of the ground state, atomic transitions and lamb shift can only be
explained by taking into account both fields. If self reaction was alone the atomic
ground state would not be stable (Faria et al., 2004; Milonni, 1994). In some
cases the self reaction effects can be derived equivalently from the corresponding
classical radiation theory (Dalibard et al., 1982). When a quantum mechanical
system interacts with the quantum vacuum of electromagnetic field, the coupled
Heisenberg equations for both system and field give us the radiation reaction field.
For example, it can be shown that the radiation reaction for a charged harmonic
oscillator is 2e2

3c3 , (Faria et al., 2004; Milonni, 1994). One method for generating
coherent states is by interacting a classical current source with the quantized
electromagnetic field, where the probability Pn for emission of n photons when

1 Department of Physics, University of Isfahan, Hezar Jarib Ave., Isfahan, Iran.
2 To whom correspondence should be addressed at the Department of Physics, University of Isfahan,

Hezar Jarib Ave., Isfahan, Iran; e-mail: fardin kh@phys.ui.ac.ir.

1573
0020-7748/05/0900-1573/0 C© 2005 Springer Science+Business Media, Inc.



1574 Kheirandish and Amooshahi

neither the momenta nor the polarization are observed is a Poissonian distribution
(Itzykson, 1985). In this paper,we investigate the quantum dynamics of a non-
linear nano-scale charged string and its interaction with the quantum vacuum
field. The effect of non-linear term on probability amplitude for some transitions
are investigated. In the last section, the radiation reaction field for the quantized
vibrating string is derived and it is shown that the correct equation for string
contains the vacuum as well as the radiation.

2. QUANTUM NON-LINEAR DYNAMICS OF A NANO
VIBRATING CHARGED STRING

Consider a nano-string with length L on x-axis and let’s apply the periodic
boundary conditions. The mechanical wave function y(x, t) of this string satisfies
the following non-linear equation

∂2y

∂t2
− v2 ∂2y

∂x2
= γ

2

∂2y

∂x2

(
∂y

∂x

)2

, (1)

where γ and v are constants depending on the string. This equation can be obtained
from the following Lagrangian density

£ = 1

2

(
∂y

∂t

)2

− 1

2
v2

(
∂y

∂x

)2

− γ

24

(
∂y

∂x

)4

, (2)

the canonical momentum density corresponding to y(x, t) is

πy(x, t) = ∂£
∂(∂ty)

= ∂y(x, t)

∂t
(3)

and the canonical quantization rule is (Greiner, 1996)

[πy(x, t), y(x ′, t)] = −iδ(x − x ′) (4)

The Lagrangian density (2) give us the Hamiltonian

Hs(t) =
∫ L

0
dx

(
π2

y

2
+ 1

2
v2

(
∂y

∂x

)2

+ 1

24
γ

(
∂y

∂x

)4
)

. (5)

By expanding y(x, t) and πy(x, t) in terms of orthogonal periodic functions e
i2πnx

L

y(x, t) =
+∞∑

n=−∞
Cn(t)e

i2πnx
L πy(x, t) =

+∞∑
n=−∞

Ċn(t)e
i2πnx

L (6)

and using (4) we find the following commutation relations

[Cn(t), Ċm(t)] = i

L
δn,−m [Cn(t), Ċm

†
(t)] = i

L
δn,m, (7)
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because of hermiticty of operators y(x, t) and πy(x, t) we find from (6),

C†
n(t) = C−n(t), Ċ†

n(t) = Ċ−n(t), (8)

now we rewrite the Hamiltonian (5) in terms of Cn’s

Hs(t) = H1s + H2s

H1s = L

2

+∞∑
n=−∞

Ċn(t)Ċn
† + L

2

+∞∑
n=−∞

ω2
nCnC

†
n

H2s = −
+∞∑

n,s,t=−∞
Mn,s,tCnCsCtC

†
n+s+t

Mn,s,t = 2π4γ

3L3
nst(n + s + t) (9)

where ωn = 2πvn
L

. Hamiltonian (9) give the Heisenberg equations for Cj ’s

C̈j + ω2
jCj =

+∞∑
s,t=−∞

Ls,tCsCtC
†
s+t−j

Ls,t = −8π4γj

3L4
st(s + t − j ) (10)

Let us define the operator Õ(t), for any operator Os in Schrodinger picture as

Õ(t) = eiH1s tOse−iH1s t , (11)

so in the special case for the operators Cn(t) we have

C̃n(t) = eiH1s tCn(0)e−iH1s t = B
†
−ne

iωnt + Bne
−iωnt . (12)

where we have used from (8). New operators Bn and B
†
−n, are annihilation and

creation operators of phonons of type |n〉, i.e, with the wave function 1√
L
e( 2πn

L
x)

and satisfy the following commutation relations

[Bn,B
†
m] = δn,m

2Lωn

. (13)

A state with j phonons in fock space with the corresponding modes, s1, s2, . . . , sj ,
is denoted by |s1, s2, . . . , sj 〉, such that

Bm|s1, s2, . . . , sj 〉 = 1√
2Lωm

j∑
r=1

δm,sr
|s1, . . . , sr−1, sr+1, . . . , sj 〉,

B†
m|s1, s2, . . . , sj 〉 = 1√

2Lωm

|m, s1, . . . , sj 〉, (14)
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substituting Cn(0) = C̃n(0) from (12) in (9), gives the Hamiltonian Hs
s in

Schrodinger picture

Hs
s = Hs

1s + Hs
2s

H s
1s = 2L

∑
n

ω2
nB

†
nBn

Hs
2s = −6

∑
n,s,t

Mn,s,−tB
†
nB†

s BtBn+s−t − 4
∑
n,s,t

Mn,s,−tB
†
t BsBnBt−s−n

−
∑
n,s,t

Mn,s,tB
†
nB†

s B
†
t B

†
−n−s−t − 4

∑
n,s,t

Mn,s,tB
†
nB†

s B
†
t Bn+s+t

−
∑
n,s,t

Mn,s,tBnBsBtB−n−s−t (15)

The eigenvalues of Hs
s up to the first-order perturbation, can be obtained from the

following relation

Es1,...,sj
=

j∑
i=1

ωsi
+ E(1)

s1,...,sj
,

E(1)
s1,...,sj

= 〈
s1, . . . , sj |Hs

2s |s1, . . . , sj

〉 =
j∑

i=1

∑
r �=i

2γπ4

3ω2
si
ω2

sr
L

s2
i s

2
r . (16)

Let |ψ(t)〉s be the state vector in Schrodinger picture and define ˜|ψ(t)〉 =
e−iH2s t |ψ(t)〉s , then ˜|ψ(t)〉 satisfies the time evolution equation

i
∂

∂t
˜|ψ(t)〉 = H̃2s(t) ˜|ψ(t)〉, (17)

and up to the first-order perturbation ˜|ψ(t)〉 we have

˜|ψ(t)〉 =
(

1 − i

∫ t

0
dt1H̃2s(t1)

) ˜|ψ(0)〉. (18)

For example, if ˜|ψ(0)〉 is the vacuum state of string |0〉 then

˜|ψ(t)〉 = |0〉 + i
∑
n,l,s

Mn,l,s√
(2L)4ωnωlωsωn+l+s

|n, l, s,−n − l − s〉

× sin (ωn+ωl+ωs+ωn+l+s )
2 t

ωn+ωl+ωs+ωn+l+s

2

ei
(ωn+ωl+ωs+ωn+l+s )t

2 , (19)
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and If ˜|ψ(0)〉 = |j 〉, i.e, the string is in its j -th mode, for some j then

˜|ψ(t)〉 = |j 〉 + 4i
∑
n,s

Mn,s,−j√
(2L)4ωnωsωjωj−n−s

|n, s, j − n − s〉

×
sin

(
(ωn+ωs+ωj−n−s−ωj )

2

)
t

(ωn+ωs+ωj−n−s−ωj )
2

ei
(ωn+ωs+ωj−n−s−ωj )t

2

+ i
∑
n,l,s

Mn,l,s√
(2L)4ωnωlωsωn+l+s

|j, n, l, s,−n − l − s〉

×
sin

(
(ωn+ωl+ωs+ωn+l+s )

2

)
t

(ωn+ωl+ωs+ωn+l+s )
2

ei
(ωn+ωl+ωs+ωn+l+s )t

2 , (20)

which gives the probability of transition |j 〉 → |p, q, r〉 after passing a long time

|〈p, q, r|ψ̃(t)〉|2 = 32π9γ 2t

L6ωpωqωrωj

(jpqr)2δj,p+q+r δ

× (ωp + ωq + ωr − ωj ) (21)

We can also determine Cn(t) up to the first-order approximation to be

Cn(t) = Ene
iωnt + Fne

−iωnt

+
∑
s,j

L−s,−jB
†
s B

†
j Bs+j+n

ω2
n − (ωs + ωj − ωs+j−n)2

ei(ωs+ωj −ωs+j−n)t

+
∑
s,j

L−s,−jB
†
s B

†
j B−s−j−n

ω2
n − (ωs + ωj + ωs+j−n)2

ei(ωs+ωj +ωs+j−n)t

+
∑
s,j

L−s,jB
†
s BjBs+n−j

ω2
n − (ωs − ωj − ωs+j−n)2

ei(ωs−ωj −ωs+j−n)t

+
∑
s,j

L−s,jB
†
s B

†
j−s−nBj

ω2
n − (ωs − ωj + ωs+j−n)2

ei(ωs−ωj +ωs+j−n)t

+
∑
s,j

Ls,−jB
†
j BsBn+j−s

ω2
n − (ωj − ωs − ωs+j−n)2

ei(ωj −ωs−ωs+j−n)t

+
∑
s,j

Ls,−jB
†
j B

†
s−n−jBs

ω2
n − (ωj − ωs + ωs+j−n)2

ei(ωj −ωs+ωs+j−n)t
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+
∑
s,j

Ls,jBjBsBn−s−j

ω2
n − (ωj + ωs + ωs+j−n)2

e−i(ωj +ωs+ωs+j−n)t

+
∑
s,j

Ls,jB
†
s+j−nBjBs

ω2
n − (ωj + ωs − ωs+j−n)2

e−i(ωj +ωs−ωs+j−n)t (22)

and the operators En, Fn, can be determined from the initial conditions

Cn(0) = B
†
−n + Bn,

Ċn(0) = iωnB
†
−n − iωnBn. (23)

3. INTERACTION WITH THE QUANTUM VACUUM FIELD

When the quantized vibrating string interacts with the quantum vacuum of
the electromagnetic field, the total Hamiltonian can be written as

H = Hs + HF + H ′ = H1s + H2s + HF + H ′, (24)

where Hs = H1s + H2s , is the string Hamiltonian defined in (9), HF is the
Hamiltonian of the vacuum field and H ′ is the interaction part, defined by

HF =
∫

d3x

[
−1

2
πµπµ + 1

2

3∑
k=1

(∂kAν)(∂kAν)

]

H ′ =
∫

d3xjµAµ, (25)

where πµ = − ∂Aµ

∂t
is canonical momentum density corresponding to Aµ and the

Lagrangian density of the electromagnetic field is (Greiner, 1996)

£′ = −1

2
(∂µAν)(∂µAν) − jµAµ. (26)

Suppose a vibrating medium has the electrical charge density ρ(x), and let 	η(	x, t)
be the mechanical wave propagating in the medium, i.e, 	η(	x, t) is the departure
from the stable state of an infinitesimal element with center 	x, this vibrating
medium interacts with the quantized electromagnetic field as follows,

H ′ =
∫

jµ(	x, t)Aµ(	x, t)d3x =
∫

d3xρ(	x)

[
A0(	x, t) + 	∇A0(	x, t) · 	η(	x, t)

− ∂ 	η(	x, t)

∂t
· 	A(	x, t) − (	η(	x, t) · ∇) 	A(	x, t) · ∂ 	η(	x, t)

∂t
+ · · ·

]
, (27)
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where ρ(	x) is the charge density before the medium starts vibrating. We rewrite
H ′ up to the dipole approximation so∫

jµ(	x, t)Aµ(	x, t)d3x ∼
∫

d3xρ(	x)( 	∇A0(	x, t)

+ ∂ 	A(	x, t)

∂t
) · 	η(	x, t) = −

∫
d3x 	P (	x, t) · 	E(	x, t), (28)

where 	P (	x, t) is the electric dipole density of the vibrating medium. For the string
with a charge density σ and length L stretched on the x1 axis with its two ends at
x = 0 and x = L, we can write the charge density field as follows

ρ(	x) = σδ(x2)δ(x3)(u(x1) − u(x1 − L)), (29)

where u is the step function, assume that the string vibrates only in the x2 direction
such that y(x1, t) 	j be the corresponding mechanical wave function, so by using
(28), the interaction part of the Hamiltonian can be written as

H ′(t) = −σ

∫ L

0
dx1y(x1, t)E2(x1, 0, 0, t) (30)

By defining H0 := H1s + HF and H ′′ := H2s + H ′ such that H = H0 + H ′′, we
have in the interaction picture

yI (x1, t) = eiH0t y(x1, 0)e−iH0t =
+∞∑

n=−∞

(
Bne

−i|ωn|t+iknx
1 + B†

nei|ωn|t−iknx
1)

(πy)I (x1, t) = eiH0tπy(x1, 0)e−iH0t = i

+∞∑
n=−∞

|ωn|
(
B†

nei|ωn|t−iknx
1 − Bne

−i|ωn|t+iknx
1)

(31)

where kn = 2πn
L

, ωn = 2πnv
L

. The new annihilation and creation operators Bn and

B
†
m of the string satisfy the commutation relation (13). For electromagnetic field

we can write the following expansions in the interaction picture

A
µ

I (	x, t) =
∫

d3k√
2(2π )3ωk

3∑
λ=0

(b†kλe
iωkt−i	k·	x + bkλe

−iωkt+i	k·	x)εµ(	k, λ),

π
µ

I (	x, t) = −
∫

d3kiωk√
2(2π )3ωk

3∑
λ=0

(
b
†
kλe

iωkt−i	k·	x − bkλe
−iωkt+i	k·	x)εµ(	k, λ),

	EI (	x, t) = i

2∑
λ=1

∫
d3k

√
ωk

2(2π )3
	ε(	k, λ)

(
bkλe

−iωkt+i	k·	x − b
†
kλe

iωkt−i	k·	x), (32)
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and the creation and annihilation operators bkλ and b
†
kλ satisfy the computation

relation

[bkλ, b
†
k′λ′] = δλλ′δ(	k − 	k′), (33)

one can easily obtain the Hamiltonian (H0)I in the interaction picture

(H0)I = H0 = L

+∞∑
n=−∞

ω2
nB

†
nBn +

∫
d3k

2∑
λ=1

ωkb
†
kλbkλ. (34)

If we ignore H2s in the Hamiltonian H ′′, i.e, H ′′ = H ′, and write H ′ in the
interaction picture as

H ′
I (t) = −σ

∫ L

0
yI (x1, t)E2

I (x1, 0, 0, t)dx1, (35)

then by substituting yI (x1, t) from (31) and E2
I (x1, 0, 0, t) from (32) one can

obtain H ′
I (t) and calculate the probability amplitude for various transitions. Up to

the first-order perturbation, the evolution operator U (1), in interaction picture, is

U (1)(+∞,−∞) = 1 − i

∫ +∞

−∞
H ′

I (t)dt, (36)

for example, the probability amplitude for transition from |0〉F ⊗ |m〉s to
|	q, r〉F ⊗ |0〉s
is

−iσ
√

ωq

2
√

2πL|ωm|ε
2(	q, r)δ(ωq − |ωm|)e

−iq1L − 1

km − q1
, (37)

where 	q and r are momentum and polarization of the created photon respectively,
m is the quantum number for string quanta, |0〉F and |0〉s are electromagnetic and
string vacuums respectively. In the second-order perturbation we have

U (2)(+∞,−∞) = 1 − i

∫ +∞

−∞
H ′

I (t)dt

− 1

2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2T (H ′(t1)H ′(t2), (38)

by using of wick theorem (Greiner, 1996) the last term can be written as

− 1

2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2T (H ′(t1)H ′(t2)

= − σ 2

2

∫ +∞

−∞
dt1

∫ L

0
dx1

∫ +∞

−∞
dt2

∫ L

0
dz1

{
: yI (x1, t1)E2

I (x1, 0, 0, t1)yI (z1, t2)E2
I (z1, 0, 0, t2) :
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+ : E2
I (x1, 0, 0, t1)E2

I (z1, 0, 0, t2) : 〈0|yI (x1, t1)yI (z1, t2)|0〉
+ : yI (x1, t1)yI (z1, t2) : 〈0|E2

I (x1, 0, 0, t1)E2
I (z1, 0, 0, t2)|0〉

+ 〈0|yI (x1, t1)yI (z1, t2)|0〉〈0|E2
I (x1, 0, 0, t1)E2

I (z1, 0, 0, t2)|0〉}. (39)

where : : denote the normal ordering. The second term under integral has no
effect on the probability amplitude of those transitions that initial and final string
states are different. The third term under integral has no effect on the probability
amplitude of those transitions that initial and final photon states are different,
also the last term has no effect on the probability amplitude of those transitions
that initial and final states both string and electromagnetic field are different. By
substituting yI (x1, t) from (31) and E3

I (x1, 0, 0, t) from (32) into the first term
in above equation, one can calculate the probability amplitude for some special
transitions. For example, probability amplitude for the transition
|m〉 ⊗ | 	p, r1〉F → |n〉 ⊗ |	q, r2〉F is

− σ 2√ωqωp

16πL
√|ωm||ωn|

ε2( 	p, r1)ε2(	q, r2)δ(ωq − |ωm|)

× δ(ωp − |ωn|) (e−iq1L − 1)(eip1L − 1)

(kn − p1)(km − q1)
, (40)

If we keep H2s in H ′′, then H ′′ = H ′ + H2s and up to the first-order perturbation,
we have

U (1)(+∞,−∞) = 1 − i

∫ +∞

−∞
dt

∫ L

0
dx1

[
γ

24

(
∂yI (x1, t)

∂x1

)4

+ σyI (x1, t)E2
I (x1, 0, 0, t)

]
, (41)

in this case, the term 1
24 ( ∂y(x1,t)

∂x1 )4 has no effect on the probability amplitude
of those transitions that the initial and the final photon states are different.
In the second-order perturbation, we can write

− 1

2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2T (H ′(t1)H ′(t2)

= −1

2

∫ +∞

−∞
dt1

∫ L

0
dx1

∫ +∞

−∞
dt2

∫ L

0
dz1

×
{

γ 2

576
T

[
:

(
∂y(x1, t1)

∂x1

)4

::

(
∂y(z1, t2)

∂z1

)4

:

]

+ γ σ

24
T

[
:

(
∂y(x1, t1)

∂x1

)4

: y(z1, t2)E2(z1, 0, 0, t2) :

]
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+ γ σ

24
T

[
: y(x1, t1)E2(x1, 0, 0, t1) ::

(
∂y(z1, t2)

∂z1

)4
]

− σ 2T [: y(x1, t1)E2(x1, 0, 0, t1) :: y(z1, t2)E2(z1, 0, 0, t2) :]

}
. (42)

The first term under integral has no effect on those probability amplitude that
the initial photon state is different from final photon state. The effect of fourth
term under integral is similar to (39) and has no effect on some of transitions.
For example, transition |m〉s ⊗ |l〉s |f 〉s ⊗ |0〉F −→ |n〉s ⊗ |j 〉s ⊗ | 	p, r〉F up to
the second-order perturbation, has the following probability amplitude

−γ σε3( 	p, r)

4
√

ωlωf ωmωnωj

√
(2π )9ωp

L11

×
{

mlnjδ(ωn + ωj − ωm − ωl)δ(ωf − ωp)δm+l,n+j

e−ip1L − 1

p1 − 2πf

L

+mf njδ(ωn + ωj − ωm − ωf )δ(ωl − ωp)δm+f,n+j

e−ip1L − 1

p1 − 2πl
L

+ lf njδ(ωn + ωj − ωl − ωf )δ(ωm − ωp)δl+f,n+j

e−ip1L − 1

p1 − 2πm
L

)

}
, (43)

which is only the effect of the second and third term in (42). That is only the non-
linear term γ

24 ( ∂y

∂x
)4 in Hamiltonian (5) has a non-zero effect in this probability. Also

the probability amplitude for transition |m〉s ⊗ |l〉s ⊗ |f 〉s ⊗ |j 〉s ⊗ |0〉F −→
|n〉s ⊗ | 	p, r〉F is

−γ σε3( 	p, r)

4
√

ωlωf ωmωnωj

√
(2π )9ωp

L11

×
{

mlnf δ(ωn − ωf − ωm − ωl)δ(ωj − ωp)δm+l+f,n

e−ip1L − 1

p1 − 2πj

L

+ (mlnjδ(ωn − ωl − ωm − ωj )δ(ωf − ωp)δm+l+j,f

e−ip1L − 1

p1 − 2πf

L

+ lf njδ(ωn − ωj − ωl − ωf )δ(ωm − ωp)δl+f +j,n

e−ip1L − 1

p1 − 2πm
L

+mf njδ(ωn − ωj − ωm − ωf )δ(ωl − ωp)δm+f +j,n

e−ip1L − 1

p1 − 2πl
L

}
(44)
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which is only due to the effect of non-linear term γ

24 ( ∂y

∂x1 )4

4. THE EFFECT OF VACUUM FIELD AND RADIATION REACTION

In this section, we use the Coulomb gauge for finding the radiation reaction
effect. For this purpose, let us write the free part of the electromagnetic field as

HF = 1

2

∫
d3x(( 	E‖)2 + ( 	E⊥)2 + 2 	E⊥. 	E‖ + 	B2) (45)

where 	E⊥ = − ∂ 	A
∂t

and 	E‖ = −	∇A0, HF can be rewritten simply as

HF = 1

2

∫
d3x(( 	E⊥)2 + 	B2) + 1

2

∫
d3xj0(	x, t)A0(	x, t), (46)

where the last term is the Coulomb interaction of the string with itself which
clearly is divergent and we may ignore it because we are not interested in self
interaction effects. So the effective Hamiltonian can be considered to be

H = HF = 1

2

∫
d3x(( 	E⊥)2 + 	B2) =

2∑
λ=1

ωk

(
a
†
kλ(t)akλ(t) + 1

2

)
, (47)

and accordingly the total Hamiltonian is

H = Hs + HF + H ′

= Hs +
2∑

λ=1

ωk

(
a
†
kλ(t)akλ(t) + 1

2

)
−

∫
dx3 	j (	x, t). 	A(	x, t), (48)

where Hs is defined in (5). The interaction part of the Hamiltonian (27) up to
the electric dipole approximation is given by (30) which gives the Heisenberg
equation for y(x1, t) as

∂2y

∂t2
− v2 ∂2y

∂(x1)2
= γ

2

(
∂y

∂x1

)2
∂2y

∂(x1)2
+ σE2(x1, 0, 0, t). (49)

The vector potential 	A and transverse electrical field are defined by (Milonni, 1994)

	A(	x, t) =
∫

d3k√
2(2π )3ωk

2∑
λ=1

(akλ(t)e+i	k.	x + a
†
kλ(t)e−i	k.	x)	ε(	k, λ)

	E⊥(	x, t) =
∫

d3kiωk√
2(2π )3ωk

2∑
λ=1

(akλ(t)e+i	k.	x − a
†
kλ(t)e−i	k.	x)	ε(	k, λ), (50)
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where the time dependence of akλ(t) is not simply as akλe
−iωkt and must be

specified by Heisenberg equation so

ȧkλ(t) = i[H, akλ(t)] = i[Hs + HF + H ′]

= −iωkakλ(t) − σ

√
ωk

2(2π )3
ε2(	k, λ)

∫ L

0
dzy(z, t)e−ik1z, (51)

where we have used the commutation relations [ak′λ′(t), a†
kλ(t)] = δλλ′δ(	k − 	k′).

A formal solution for above equation can be written as

akλ(t) = akλ(0)e−iωkt

− σ

√
ωk

2(2π )3
ε2(	k, λ)

∫ t

0
dt ′eiωk(t−t ′)

∫ L

0
dzy(z, t ′)e−ik1z, (52)

now by substituting akλ(t) from Eq. (52) in electrical field expression (50), one
obtains the electrical field as the sum of two parts, the first part is nothing but the
vacuum field which is

E2
0(x1, 0, 0, t) = i

∫
d3k

√
ωk

2(2π )3

2∑
λ=1

(akλ(0)e−iωkt+ik1x1

− a
†
kλ(0)eiωkt−ik1x1

)ε2(	kλ), (53)

the second part is the radiation reaction field

E2
RR(x1, 0, 0, t) = − σπ

(2π )3

∫ 2ϕ

0
dϕ

∫ π

0
dθ sin θ

2∑
λ=1

(ε2(	k, λ))2

×
∫ t

0
dt ′

∫ L

0
dzy(z, t ′)

∂3

∂(t ′)3
δ(t − t ′ + (x1 − z) cos θ ). (54)

Integration by parts respect to t ′ and then inserting
∑2

λ=1(ε2(	k, λ))2 = 1 −
sin2 θ cos2 ϕ and doing integrals with respect to θ, ϕ, we at last come to the
following relation for radiation reaction component

E2
RR(x1, 0, 0, t) = σ

π

∫ L

0
dz

∞∑
m=0

(m + 1)(x1 − z)2m

(2m)!(2m + 1)(2m + 3)

∂2m+3

∂t2m+3
y(z, t), (55)

the first term, i.e, m = 0 gives the first-order approximation of E2
RR

E2
RR(x1, 0, 0, t) = σ

3π

∫ L

0
dz

∂3y(z, t)

∂t3
, (56)

that may be compared with radiation reaction field due to one-dimensional har-
monic oscillator (Milonni, 1994). Using (56), the Heisenberg equation (49) can
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be written like this

∂2y

∂t2
− v2 ∂2y

∂(x1)2
= γ

24

∂2y

∂(x1)2

(
∂y

∂x1

)2

+ σ 2

3π

∫ L

0
dz

∂3y(z, t)

∂t3
+ σE2

0(x1, 0, 0, t). (57)

REFERENCES

Dalibard, J., Dupont, J., and Cohen-Tannoudji, C. (1982). Journal de Physique, 43, 1617; 45 (1984)
637.

Faria, A. J., Franca, H. M., and Malta, C. P. (2004). The Schrodinger picture and the zero-point
radiation, Quant-ph/0409117, 1.

Greiner, W. (1996). Field Quantization, Springer-Verlag.
Itzykson, C. (1985). Quantum Field Theory, Mcgraw-Hill.
Milonni, P. W. (1994). The Quantum Vacuum, Academic Press.


